
Managing Object Versioning in Geo-Distributed
Object Storage Systems

João Neto
∗

KTH
joaon@kth.se

Vianney Rancurel
Scality

vianney.rancurel@scality.com

Vinh Tao
Scality and UPMC-LIP6

vinh.tao@lip6.fr

ABSTRACT
Object versioning is the keystone for implementing even-
tual consistency in modern geo-distributed object stor-
age systems such as Amazon S3. Despite this, the study
of implementing object versioning has not been given a
lot of attention in either academic or industrial com-
munities. The selection of an implementation method
is not considered as an important factor impacting the
overall system performance under different workloads.

In this paper, we present our study of two methods
of implementing object versioning in geo-distributed ob-
ject storage systems and on how these impact the per-
formance of these systems under different workloads.
We propose and analyze the advantages and disadvan-
tages of (1) Write-Repair approach and (2) Read-Repair
approach. From our experiments, we found that the
choice of approach significantly impacts the performance
of storage systems, which in turn impact the perfor-
mance of applications built on top of these systems.

1. INTRODUCTION
NoSQL key-value stores such as Amazon S3 [1] and

the likes of Basho Riak [3] and Apache Cassandra [2]
have contributed to the movement of computing to its
third-platform [15, 6], in which cloud computing and
cloud storage play an important role for the availability
of the services in this ecosystem. At the core of cloud
storage systems, eventual consistency is the main mech-
anism that enables these systems to provide highly-
available services to the end-users.

∗Now at Universitat Politècnica de Catalunya. The
work was done when the author was in an internship
at Scality.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

ScienceCloud’16, June 01 2016, Kyoto, Japan
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to

ACM. ISBN 978-1-4503-4353-4/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2913712.2913714

Although the use of eventual consistency has become
mainstream, the details on how to implement its core
mechanism—object versioning—have not yet been dis-
cussed thoroughly in the context of geo-distributed ob-
ject storage systems. This leaves unanswered questions:
(1) what are the different implementation approaches
of object versioning and (2) how does each of these ap-
proaches impact the performance and the usage of the
resulting storage systems in different scenarios and dif-
ferent workloads.

We have generalized and implemented two different
mechanisms, Write-Repair and Read-Repair, for con-
trolling object versioning in our geo-distributed object
storage system. The former approach resolves all of the
existing conflicts at the time an update is committed
and provides readers the final value of the update, while
the latter does not require conflict resolution at the com-
mit time, enabling updates to commit quickly. Our ex-
perimental results have shown that both Write-Repair
and Read-Repair provide their own advantages, which
are fast read for the former and fast commit for the lat-
ter, while exhibiting their disadvantages. Beyond this
result, we also provide the requirements for an efficient
implementation of each of the aforementioned mecha-
nisms that could impact their overall performance in
different real-world use-cases.

Our contributions can be summarized as following:

• We explore the two different approaches of imple-
menting object versioning for eventual consistency
in geo-distributed storage systems and their im-
pact on the performance of these systems under
different workloads.
• We generalize these approaches into two different

representative implementation methods, namely,
Write-Repair and Read-Repair, each with its own
advantages and disadvantages. We also analyze
and provide some useful requirements and criteria
in order to efficiently implement each approach.

The rest of the paper is organized as follows: In Sec-
tion 2.1, we introduce some background information
on the problems in geo-distributed storage systems and
their resolution. In Section 2.2, we describe the design
of our system with its analysis. We present in detail the

11

implementation of our system and the two approaches
on eventual consistency in Section 3. Finally, we report
our experiments and their results in Section 4.

2. BACKGROUND

2.1 Geo-Replication Issues
A typical geo-distributed storage system spans mul-

tiple datacenters (or sites), each of which located at
a different geographical location. To improve avail-
ability, these systems usually replicate their data at
all sites. For maintaining the consistency across sites,
these systems usually use locking (in the form of a geo-
distributed lock), or have a single master site that de-
cides the order of all updates from all sites. Because of
the high latency of inter-datacenter networks—which
is much higher than that of the intra-datacenter net-
works—committing updates in these systems using tra-
ditional locking approaches is usually prohibitively ex-
pensive, especially for those systems at the global scale.

In the simple eventual consistency approach, each
site of a geo-distributed storage system can commit up-
dates locally to avoid inter-datacenter coordination be-
fore propagating these updates to the other sites. When
all sites have received and committed all local updates
from the other sites, they will converge to the same
state.

The apparent issue with this approach is that updates
from different sites can concurrently target the same
object in the storage systems. Then deciding which up-
date to keep and which to ignore (thus to rollback) is
problematic. Strong eventual consistency [12] instead
opts to keep all updates in different versions of the tar-
get object—this mode is known as object versioning—
and then tries to resolve any existing conflict between
these updates. In real-world geo-distributed object stor-
age systems with object versioning, such as Amazon S3,
any update to any object creates a new unique version
of that object which is identified by a unique id in the
response to the update. Therefore, systems with ob-
ject versioning never encounter the issue of rolling back
an update when it conflicts with some other concurrent
updates.

Because having multiple concurrent versions of an ob-
ject may confuse the applications when choosing which
version of the object to use, geo-distributed object stor-
age systems with object versioning also have to provide
a deterministic mechanism for each datacenter to deter-
mine the latest version of an object out of a list of its
concurrent versions. A solution for this issue is (1) to
have the partial order between different versions of an
object to narrow down the scope of the latest versions,
and then (2) to use the Last-Writer-Wins (LWW) ap-
proach to deterministically decide the latest version out
of the list of concurrent versions. The problem of or-
dering updates in distributed systems is usually solved
using version vectors [7, 9]. This mechanism tracks

the partial order of these updates. For concurrent up-
dates targeting the same object, their conflict can be re-
solved using the LWW approach. The LWW approach
decides which update should be considered the latest
value of the updated object, using factors such as real-
timestamp or a preference list. Though the decision of
the LWW approach is arbitrary, this decision must be
deterministic across sites.

Implementing the Last-Writer-Wins approach also ex-
poses some options that affect the performance of dif-
ferent geo-distributed object storage systems with dif-
ferent workloads. This is the main target of our study
as will be described in the next sections.

2.2 Object Storage System Design and As-
sumptions

In this section, we provide our system design along
with our discussion of the design decisions that we made.
This design provides the basis for our replication and
conflict resolution models in the later sections.

Assumption 1: We have separate storage systems for
metadata and data in our object storage system. The
separation of metadata and data has become a common
pattern in many other distributed systems, including
Google File System [5], Boxwood [10] and Hadoop Dis-
tributed File System [13]. It provides a good separation-
of-concerns practice in designing and implementing dis-
tributed storage systems that frees us from having to
deal with replication of data.

We share the same point of view regarding this pat-
tern. In our view, the real bottleneck of a system is the
metadata path. By making the data content (data, for
short) immutable using the Copy-on-Write technique
we can remove the data, which usually is much larger
in size as compared to metadata, from the critical path.
When data is stored in an immutable way, it can be
replicated easily in geo-distributed systems. Because
of the Copy-on-Write technique, each data item in the
system is as unique as the others; modifying an object
creates a new version of that object. Therefore, there
is no conflict in writing to the same object in the data
part of the system and we can have a single storage sys-
tem spanning multiple sites for storing data. On the
other hand, metadata is mutable, which means it can
be modified by users. In a distributed setup where data
is replicated on different sites, the metadata of the same
object could be concurrently modified by different users
from different sites. Therefore, we keep a full replica of
the metadata at each site to enable local operations.

Our system design is show in Figure 1. We have a
dedicated data storage, called stretch data ring that
stores immutable data. This dedicated storage system
provides a simple key-value store API (with PUT, GET
and DELETE), and is based on Chord [14]. The data
store is composed of all data nodes from all sites and
provides the same namespace to all users on all sites.
Each data object is represented by a unique key; the

12

Figure 1: The design of our system with stretch
rings.

process of generating a key is deterministic, without
the need of coordination between sites. In a normal
usage scenario, if a user on site A writes a data item
which is identified by key k to the stretch data ring,
then eventually users on all sites will be able to retrieve
this data item by looking up k in the stretch data ring.
There are different metadata rings, each of which stores
the whole copy of the system’s metadata. All metadata
rings talk directly to each other to exchange their local
updates while all of the data is redirected to the shared
data ring.

Assumption 2: The metadata storage system provides
the API of a key-value store with range query ability for
the keys. This range query feature is an essential feature
for implementing LWW in our object storage system,
as it is described in the next sections. It enables us to
efficiently look for the latest concurrent versions of an
object without any knowledge about these versions.

3. IMPLEMENTING EVENTUAL CON-
SISTENCY

In this section, we describe the common behaviour
of both approaches of our eventually consistent geo-
distributed storage system, as well as the implemen-
tation requirements.

3.1 Object Versioning Behavior
A common solution to the problem of conflicting up-

dates from different sites is to make most of the meta-
data immutable. This is achieved by making every up-
date to an object a separate, independent version entry
in the version history of an object. Amazon S3 is ar-
guably the most well-known example implementing this
approach. When versioning is enabled, any update to
an object in Amazon S3 creates a new version of the
the object; this version information is returned to the
client in the response of the update request. Users may
use this version information to select the version of the
object to retrieve.

With this mechanism, updates to the same object
from any of the other sites also create another version
of the object and append this version to the object’s
version history. Users on the other sites can explore the

Figure 2: Example of the versioning API. Ar-
rows describe the partial order (A → B means
A happened-before B following Lamport’s nota-
tion [9]) of the different versions.

newest versions of the object by querying the object
without any prior knowledge about the latest version.
At this point, we can see that the object itself is the sin-
gle entry point to access the latest version and the his-
tory of the object. An example of this API is described
in Figure 2, where an object has several versions, with
those latest versions being ver.3, ver.4, and ver.5;
in this example, ver.4 is selected as the latest version,
and all read requests such as GET and LIST will go di-
rectly to this version. Users are still able to retrieve the
earlier version by specifying the version number in their
GET requests.

The implementation on how to select this latest ver-
sion and how to manage the version history of an object
is the technical problem that we tackle and describe in
the following section.

3.2 Implementation Approaches
From the above analysis, we arrive at two different

approaches for implementing this entry point: Write-
Repair and Read-Repair. These designs are based on
the fact that the process of identifying which update
should be the latest one (we name this process LWW)
could be done when committing the update or when
reading from the entry point.

3.2.1 Write-Repair
The Write-Repair approach performs the LWW pro-

cess at the time it commits updates. In order to do
so, the system first gets the version history of the tar-
get object of an update. Then, it determines the latest
version of that object by comparing the version of the
update with the latest versions in the version history.
Finally, the system updates the object’s version history
and writes both this history and the latest version back
to the metadata ring.

Thus, this approach needs two different locations to
store the metadata of an object: one for version history
and the other for metadata of the latest version. Also,
the keys for the latest version and for the version history
of an object should be known by any other sites without
any knowledge about the version of an object.

13

Writing to an object in the Write-Repair approach
requires two round-trip communications with the meta-
data ring—the first one is for retrieving the version his-
tory and the second one is for writing back the version
history and the metadata for the version determined to
be the latest. However, the advantage of this approach
is that reading the latest version of an object is simply
done by querying the known key for that object. With
this implementation, there is no need for any change at
the existing key-value store in connection with a read.

Another drawback of the Write-Repair approach is
that the metadata for the latest version of an object
(the one returned as the default on a read if no specific
version is requested) is mutable. Because committing
an update on an object needs to also update the de-
fault version of that object, there can be no concurrent
updates in a single site on a single object, otherwise one
write could overwrite the other. This property results
in the requirement that all updates on a single object
must be serialized (though real-world implementations
can minimize the effect of locking by batching updates).

This approach is depicted in the left part of Figure 3.
A client that wants to update an object foo has to do it
in two round-trips to update the version history of foo
by (1) retrieving version history of the key at v:foo,
then updating this history in the LWW process, and
finally (2) writing this version history back along with
the latest version to the metadata ring. The figure also
describes the process of reading the latest version of
foo. This is done by simply retrieving foo which is the
key for foo’s latest version.

3.2.2 Read-Repair
In order to enable single-roundtrip updates to the

storage system, the Read-Repair approach requires the
LWW process to be performed whenever an object is
read. We achieve this by making the metadata im-
mutable, meaning all updates to metadata also create
new versions of metadata, just like they do for the data
part. This could be done easily by generating a random
key for each version of any object. However, all ver-
sions of the same object should be somewhat related to
be retrieved efficiently in order to be able to determine
the latest version of an object at read.

We use prefix search to find all versions of an object.
When committing an update on an object, we create
a key with a deterministic prefix, which is the identity
of the object, and with a random suffix, which is the
version identifier. When reading the version history of
an object, we simply do a prefix query on the determin-
istic prefix. This approach ensures we have all of the
required versions. From these versions, calculating the
LWW can be done easily.

This approach enables us to have single-roundtrip
writes. In fact, by making metadata immutable, writ-
ing to the whole system is done in a single roundtrip
without being blocked by any other concurrent writes
to the same object.

The disadvantage is that the underlying key-value
store must have range query capabilities. This is not
always an easy requirement to satisfy. Furthermore,
performing a range query usually requires the scan of,
or at least an iteration through, different pages in a
distributed B tree (the common index implementation
to support range queries). This type of search is not
cheap, compared to the other exact search approaches.
The implementation of the key-value store chosen for
the Read-Repair approach should therefore be efficient
at performing range queries.

Another issue with Read-Repair is that, in geo-distri-
buted setups, it is very expensive in terms of read op-
erations, when compared to the Write-Repair systems.
Whenever a read request is made for the latest version
of an object, the site receiving the request has to re-
trieve all of the latest versions of that object from its
local storage for all sites that are known to the local
site. This results in many more (local) round-trips for
a simple read, when compared to that of Write-Repair.
Listing all of the objects available in a Read-Repair sys-
tem is the most expensive operation of all: in this case
it has to scan for all versions of all objects available in
the system to find the latest version of each object.

An example of the Read-Repair approach is shown on
the right side of Figure 3. In this example, writing to
an object foo is done by writing to a key foo_i with _i
as the unique version identifier of that update. Reading
the latest version of foo requires a scan for all keys
with the prefix foo. The key of the latest version in the
retrieved list is then used to retrieve foo’s metadata.

3.3 Implementation Details
The implementation of both Write-Repair and Read-

Repair is quite straightforward.

Write-Repair The keyscheme for Write-Repair is im-
plemented in the following way.
• The main key is the combination of the object’s

identifier id and a specific prefix pre; using a spe-
cific prefix for the main keys enables us to do the
listing function by simply issuing a prefix search
for pre as in normal key-value stores. The com-
bination for the main key is {pre:id}. With the
example of writing to foo, the main key would be
A:foo where the capital letter A is the prefix in our
implementation; listing all keys would be done by
prefix searching for A:. The value associated with
a main key of an object is always the latest version
of that object. This enables the storage system to
retrieve the latest version of an object by simply
searching for its main key.
• The key for a version of an object is compiled eas-

ily, with the object’s identifier as the prefix and the
specific unique version identifier vid as the suffix.
A specific version v4 of an object foo could then
be retrieved by searching for the key V:foo:v4.
The value of a specific version of an object is a

14

structure which includes the version vector of that
version, a timestamp associated with the version,
the identifier of the site on which the version was
created, and the metadata of the object itself.

Read-Repair The keyscheme for Read-Repair is im-
plemented in a more complicated way. Because we can-
not determine the latest version of an object using a
specific key, we need to list all versions of the object to
find the latest version.
• The keyscheme is represented by pre:id:sid:ts,

where pre is a prefix, id is the identifier of the ob-
ject, sid is the identifier of the site where the up-
date was issued, and ts is the local real timestamp
of the update. The inclusion of the real timestamp
in the key enables us to specify the scope of range
queries for GET and LIST operations.
• When retrieving the latest versions of an object

while using Read-Repair, we can do it in differ-
ent ways. The first approach is to simply issue
a full range query to get all versions of an object
and then searching through them to find the latest
version. The second approach is to issue multiple
very light range queries to get the versions, each
of which represents the latest version of the object
at a given site. The first approach is straightfor-
ward and can be used for the systems with a low
probability of object rewrites, or when the num-
ber of sites is very large. The second approach is
more efficient when an object is rewritten many
times from many sites, or when the number of
sites is very small. In the range queries on the
second approach we restrict the upper-bound to
the latest timestamp—which is the local time at
the moment of issuing the query and it is the real
upper-bound—and the number of results to 1; this
ensures the query retrieves the latest version of the
object for the given site. Since we have multiple
sites, we must issue locally as many range queries
as the number of sites, in order to get the latest
versions of that object from all the known sites.
• The LWW version is decided in a similar manner

as in Write-Repair. Keys are compared using their
version vectors to see which keys are logically more
up-to-date. Then, out of the latest versions, the
version with the most recent timestamp is chosen.
In the case that there are multiple latest versions
with the same physical timestamp (meaning they
must be from different sites), the LWW version is
chosen based on a site preference list. Again, this
does not necessarily result in the latest version in
terms of real time but is a deterministic method
for selecting the latest version.

4. EVALUATION
In this section we compare the performance of our

geo-distributed storage system using both implementa-
tions with Write-Repair and Read-Repair.

Figure 3: Write Repair and Read Repair mech-
anisms.

4.1 Experimental Setups

4.1.1 System Implementation
We implemented the Chord protocol as the underly-

ing routing mechanism for looking up in our distributed
system. We used the algorithm SHA1 for the hash func-
tion.

In order to support range query for Read-Repair, we
implemented a distributed B+Tree to use as the key-
value store for the metadata rings. This B+Tree was
also used for the stretch data ring. The Chord protocol
and the B+Tree were implemented in C language.

We also implemented a connector, which is a com-
ponent that forwards requests and performs all of the
geo-replication logic, with both Write-Repair and Read-
Repair approaches. A connector on a site received re-
quests from clients at that site, forwarded data to the
stretch data ring, indexed the data stripes1 and stored
this index in the metadata rings. The connector also
handled the versioning information of all objects in the
system by assigning version vector and timestamp to
each update, and propagated this information along
with the update to the other sites. Because data is
replicated automatically inside the stretch data ring, a
connector only needs to propagates the changed keys
and their metadata. We implemented the connector in
NodeJS.

4.1.2 Setups
Our experiments were conducted on a cluster of 6

data storage servers and 1 connector server. Each of
the 6 storage servers hosted 6 logical data nodes of the
stretch data ring and 6 logical metadata nodes of the
metadata ring. Each of the storage servers were con-
figured with an Intel Xeon E5-1620 CPU, 64GB RAM,
240GB SSD (x2), 2TB SATA (x2). The connector had
the same configuration, except it did not have the SSDs.
These servers were connected by 1Gbps links with an
average measured latency of 0.065ms.

1Large data objects were split into smaller parts named
stripe which were 1MB in size.

15

We decided not to have a full implementation of mul-
tiple sites because of a few factors. The replication
between sites does not perform any specific task other
than just applying remote updates as if they were lo-
cal. Therefore, we believe that by just emulating the
geo-replication and the remote updates by using local
updates, we can achieve the same effect in the system.
Moreover, our purpose is to test the trade-off of the dif-
ferent implementations of eventual consistency. There-
fore, it is enough use any consistent workload on both
of them to find the trade-off. In our implementation, we
also used the first approach of Read-Repair to find the
latest version, in which we list all versions of an object
and search through the version list.

4.1.3 Evaluation Strategy
We performed different operations (PUT/GET) in

the system with objects of varying sizes while varying
number of updates to see how Write-Repair and Read-
Repair would perform differently, in terms of latency.
We only measured the latency for performing requests
on metadata (rather than on both metadata and on
data) because we believe that the latency for data only
depends on the size of the data and the network band-
width, and does not depend on different implementa-
tions of eventual consistency.

In the first experiment, we ran a sequential test of
(1000) PUTs and GETs to see how each implementa-
tion performed a single operation. We changed the size
of the objects (4KB, 1MB, and 16MB) to determine
whether the performance difference between Write-Re-
pair and Read-Repair should be significant as object
size increases.

In the second experiment, we ran sequential batches
of only PUTs in order to determine the behavior of these
approaches under high concurrency. We changed the
number of requests per batch from 1K, 10K, to 100K to
apply different concurrency levels.

4.2 Experimental Results

4.2.1 Objects of different sizes
The result of the first experiment is shown in Fig-

ure 4. In the case of sequential requests of 4KB objects,
the expected performance difference between the differ-
ent approaches is shown clearly. The average latency
for GETs in Read-Repair (20ms) is the double of that
of Write-Repair (10ms) while the average latency for
PUTs of Write-Repair (37ms) is 1.5x larger than that
of Read-Repair (24ms).

As the size of the objects increased to 1MB, the la-
tency for GETs in both implementations remain the
same as for objects of 4KB, but the latency for PUTs
increased to 38ms and 50ms for Read-Repair and Write-
Repair, respectively. With an object size of 1MB, there
is still only a single data strip so the metadata to be
retrieved should be the same as with a 4KB object.
Thus, the lack of increase in latency for GETs is ex-

Figure 4: Evaluation of the systems with sequen-
tial requests (1000) of objects of different sizes.

pected. The increase in the latency for PUTs is likely
due to the increase in the usage of the network.

As the size of the objects increased to 16MB, the
latency for GETs increased by around 50% while the
PUTs latency skyrocketed to 10 times as much as PUTs
for objects of 1MB. The increase in the latency for
GETs is due to the increase in the size of the meta-
data for each object (now metadata has 16 keys for 16
data stripes). For PUTs, we assume that the increased
network usage in order to write a large amount of data
increased the PUTs latency.

Throughout the experiments, the latency for PUTs
with the Read-Repair approach was better than when
using Write-Repair, while the situation was reversed for
GETs. This result is consistent with the number of
roundtrips that each approach has to take to perform
the given tasks.

4.2.2 Batches of different sizes
In the second experiment with concurrent PUTs only,

Read-Repair still performed better in terms of latency.
The latency for the Write-Repair approach was from
double to triple that of the Read-Repair approach at
the beginning of our experiment, and the difference was
maintained at a good level as we increased the number
of concurrent batches in the system; this is shown in
Figure 5 clearly.

4.2.3 Implications
There are some important implications from these

results. First, the Read-Repair approach has better la-
tency for PUTs while the Write-Repair approach is better
at GETs and LISTs. Second, as the sizes of the objects
increase, these different approaches will be more likely
to converge at some point. And third, the efficient im-
plementation of Read-Repair requires a good underlying
key-value store with range query capabilities.

5. RELATED WORK
Amazon’s Dynamo [4] paper was the first descrip-

tion of an object storage system that achieved eventual
consistency by implementing object versioning; it has

16

Figure 5: Latency of Write-Repair and Read-
Repair in putting batches with different concur-
rency.

inspired a lot of the other systems to follow its model,
including Cassandra [8], and it has made cloud storage
and especially NoSQL a new trend for research and de-
velopment. Even though Dynamo implements object
versioning, Dynamo still requires that users specify the
original version of an object in order to write a new
version of the same object to the system. To keep the
partial order, Dynamo relies on the manual interven-
tion from users to semantically resolve conflicts between
concurrent updates (which are detected by using ver-
sion vectors). Dynamo returns the latest versions of
an object on a read request and the user must resolve
the conflict. It can thus be classified as a Read-Repair
system (with manual intervention required for repair).
Object storage systems from today have improved since
the Dynamo paper, as users in most recent systems are
not required to have prior knowledge about the previous
versions of an object in order to write a new version; it’s
enough to use version vector to keep the partial order
between versions. This progress is reflected in Amazon
S3’s API, which is a more common service of Amazon
than its DB counterpart.

A representative example of using write-repair is in
the case of distributed file systems, where the opera-
tions related to reading and listing such as open and ls
are extremely common. In these systems, such as our
previous work on the SFR [11] file system, a client com-
mitting an update is expected to: (1) read the default
version of a file, which stores its latest version, then (2)
update this default version to the version that the client
is going to write and only then (3) write this default ver-
sion back. This approach blocks concurrent writes from
the same site. However, it is easy to implement, and
more importantly, it works well in the environment of
distributed file systems where the listing operation (ls
in Unix-like file systems) is extremely common though
expensive. For example, the system when receiving a
list operation has to find the list of sub-directories and
sub-files of a directory, then for each of them, the sys-
tem has to get the attributes of the latest version of that

sub-directory or sub-file. If the system relies on Read-
Repair, to find each latest version there would have to
be a large number of range query requests. If the sys-
tem relies on Write-Repair, the system would just have
to do a simple read of the latest version.

6. CONCLUSION
We presented our study on different approaches for

implementing eventual consistency in geo-distributed
storage systems. We have shown that eventual con-
sistency can be implemented with different approaches
and that the chosen approach will impact both the im-
plementation of a system and the performance of the
system. Through our experiments, we confirmed that
the latency for PUTs is higher with a Write-Repair
approach and the latency for GETs is higher with a
Read-Repair approach. So, if a use case involves a
lot of reads and listing of objects, a Write-Repair sys-
tem should be considered. Meanwhile, the Read-Repair
approach could improve write latency for small-write
workloads which involve mostly writes (especially writes
of small objects) but this improved write latency comes
at the expense of the added complexity of required range
queries on reads. Our work is an attempt towards opti-
mizing eventual consistency geo-distributed storage sys-
tems.

Acknowledgement
We thank our anonymous reviewers for their construc-
tive comments as well as to Sana Imtiaz and Lauren
Spiegel for the valuable feedback on early versions of
this article.

7. REFERENCES
[1] Amazon Simple Storage Service.

http://aws.amazon.com/s3/. Accessed:
2014-12-31.

[2] Apache. Apache Cassandra.
http://cassandra.apache.org/. Accessed:
2015-08-24.

[3] Basho. Conflict Resolution. http://docs.basho.
com/riak/latest/dev/using/conflict-resolution/.
Accessed: 2015-04-27.

[4] DeCandia, G., Hastorun, D., Jampani, M.,
Kakulapati, G., Lakshman, A., Pilchin, A.,
Sivasubramanian, S., Vosshall, P., and
Vogels, W. Dynamo: Amazon’s Highly
Available Key-value Store. In Proceedings of 21st
ACM SIGOPS Symposium on Operating Systems
Principles (New York, NY, USA, 2007), SOSP
’07, ACM, pp. 205–220.

[5] Ghemawat, S., Gobioff, H., and Leung,
S.-T. The Google File System. In Proceedings of
the 19th ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2003), SOSP
’03, ACM, pp. 29–43.

[6] IDC. Third platform.
http://www.idc.com/prodserv/3rd-platform/.
Access: 2015-09-21.

17

[7] Jr, D. S. P., Popek, G. J., Rudisin, G.,
Stoughton, A., Walker, B. J., Walton, E.,
Chow, J. M., Edwards, D., Kiser, S., and
Kline, C. Detection of Mutual Inconsistency in
Distributed Systems. IEEE Transactions on
Software Engineering, 3 (1983), 240–247.

[8] Lakshman, A., and Prashant, M. Cassandra:
A Decentralized Structured Storage System. ACM
SIGOPS Operating Systems Review (2010), 1–6.

[9] Lamport, L. Time, Clocks, and the Ordering of
Events in a Distributed System. Communications
of the ACM 21, 7 (1978), 558–565.

[10] MacCormick, J., Murphy, N., Najork, M.,
Thekkath, C. A., and Zhou, L. Boxwood:
Abstractions as the Foundation for Storage
Infrastructure. OSDI’04, USENIX Association,
pp. 8–8.

[11] Segura, M., Rancurel, V., Tao, V., and
Shapiro, M. Scality’s Experience with a
Geo-distributed File System. In Proceedings of the
Posters & Demos Session (New York, NY, USA,
2014), Middleware Posters and Demos ’14, ACM,
pp. 31–32.

[12] Shapiro, M., Preguiça, N., Baquero, C.,
and Zawirski, M. A comprehensive study of
Convergent and Commutative Replicated Data
Types. rr 7506, Inria, rocq, 2011.

[13] Shvachko, K., Kuang, H., Radia, S., and
Chansler, R. The Hadoop Distributed File
System. In Mass Storage Systems and
Technologies (MSST), 2010 IEEE 26th
Symposium on (May 2010), pp. 1–10.

[14] Stoica, I., Morris, R., Karger, D.,
Kaashoek, M. F., and Balakrishnan, H.
Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications. In Proceedings of the
2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer
Communications (New York, NY, USA, 2001),
SIGCOMM ’01, ACM, pp. 149–160.

[15] Wikipedia. Third platform.
https://en.wikipedia.org/wiki/Third platform.
Access: 2015-09-21.

18

